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Abstract

This article presents the realization of many self-reversible quantum logic gates using two-qubit quadrupolar spin 3/2 systems.
Such operations are theoretically described using propagation matrices for the RF pulses that include the effect of the quadrupolar
evolution during the pulses. Experimental demonstrations are performed using a generalized form of the recently developed method
for quantum state tomography in spin 3/2 systems. By doing so, the possibility of controlling relative phases of superimposed pseu-
do-pure states is demonstrated. In addition, many aspects of the effect of the quadrupolar evolution, occurring during the RF pulses,
on the quantum operations performance are discussed. Most of the procedures presented can be easily adapted to describe selective
pulses of higher spin systems (>3/2) and for spin 1/2 under J couplings.
� 2005 Elsevier Inc. All rights reserved.

Keywords: NMR quantum computing; Quadrupolar nuclei; Logical operations; Transition-selective pulses; Density matrix
1. Introduction

Since the early demonstration that NMR systems
could be used for quantum information processing,
great achievement has been obtained using this tech-
nique [1–11]. Despite the exponential loss of NMR sig-
nal upon increasing number of qubits, which restricts
the scalability of systems for quantum computing
[12], the large number of demonstrations of quantum
gates and algorithms using NMR has shown that this
technique has appropriate tools for performing quan-
tum computing. This characteristic mostly relies on
the possibility of controlling with great precision the
phase of quantum states through the application of
1090-7807/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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radiofrequency (RF) pulses. Besides that, the recent
developments for creating highly pure states and also
new detection schemes are very promising for overcom-
ing the limitations of NMR quantum computing [13–
15]. In many cases, the pulse sequences used for imple-
menting quantum gates or algorithms are performed
using short hard pulses, for which the effect of the nu-
clear spin interactions during the pulse is negligible.
Recently, new implementations of quantum logic oper-
ations using quadrupolar nuclei (I > 1/2) have been
proposed. In these systems, a quadrupolar nucleus,
such as 7Li, 23Na, or 133Cs, diluted in a liquid crystal-
line matrix produces a well-defined NMR spectrum,
whose line frequencies and intensities are associated
with single-quantum transition frequencies and popula-
tions of quantum levels. Many applications of such
systems for quantum computing NMR are available
in the literature, including the creation of pseudo-pure
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states [16], implementation of basic quantum gates [17],
and quantum algorithms [3,4,18], studies of the relaxa-
tion of coherent states [19], and also methods for per-
forming quantum state tomography [20]. However,
many of these demonstrations are based only on the
spectral information, i.e., the full density matrices of
the involved states are not obtained. Since many of
the quantum operations involve the creation of super-
imposed states, whose the relative phases are character-
ized by off-diagonal coherences, the complete
information about such states is only obtained by per-
forming density matrix tomography, where all coher-
ences and populations for a given state are
determined. With this in mind, in this work pulse se-
quences for performing self-reversible Hadamard and
CNOT quantum logical operations, as well as for cre-
ating a pseudo-cat state are presented and experimen-
tally demonstrated using the density matrix
tomography process. In all these applications, transi-
tion-selective pulses were used for performing quantum
computation and analytical propagation matrices that
represent such pulses, including the effect of the quad-
rupolar evolution during the pulses [21], are presented.
This allowed describing the effect of the quadrupolar
evolution during transition-selective pulses in the
context of quantum computation and also designing
experimental calibration procedures to minimize such
effects.
2. Experimental procedures

The 23Na NMR experiments were performed using a
9.4 T-VARIAN INOVA spectrometer in a lyotropic li-
quid crystal system prepared with 20.9 wt% of sodium
dodecyl sulfate (95% of purity), 3.7 wt% of decanol,
and 75.4 wt% of deuterium oxide, following the proce-
dure described elsewhere [22]. 23Na NMR data were
recorded at room temperature using a home-built sin-
gle-resonance probe with radiofrequency Helmholtz-like
rectangular coils (only one loop 2.5 cm high and 1 cm
wide) separated by 7.5 mm. The geometry of the coils
was chosen to improve the RF magnetic field homoge-
neity along the sample, which was packed into a 5 mm
NMR tube 0.5 cm high. Gaussian-shaped RF pulses
with typical duration of 0.3–0.5 ms were used to perform
selective saturation (p/2) and inversion (p) of popula-
tions. The mean RF amplitudes and the frequency off-
sets were carefully adjusted to satisfy the selectivity
condition [23,24]. A non-selective hard p/20 pulse
1.5 ls long was applied to measure the differences of
populations for the three pairs of adjacent levels. Exper-
iments were performed with a recycle delay of 500 ms.
The 23Na NMR spectra were obtained by applying a
reading p/20 hard pulse according to a standard
CYCLOPS scheme.
3. NMR in quadrupole systems

The quantum levels in systems of diluted quadrupole
nuclei are defined by the Zeeman and Quadrupolar
interactions. The secular part of the Hamiltonian for
this system, which defines the energy manifold, can be
described in first order by Eq. (1), where xL is the Lar-
mor frequency of the nucleus and xQ is the effective
quadrupole frequency associated with the interaction
between the nuclear quadrupole moment and an axially
symmetric electric-field gradient [25]

H ¼ ��hxLIz þ �hxQð3I2z � I2Þ. ð1Þ
For a spin 3/2 system, this Hamiltonian gives rise to
four unequally spaced energy levels, originating an
NMR spectrum containing three lines, corresponding
to transitions between adjacent levels. These energy
states |3/2æ, |1/2æ, |�1/2æ, and |�3/2æ can be labeled as
|00æ, |01æ, |10æ, and |11æ in analogy to a two-qubit system
[16]. From the Hamiltonian, the density matrix can be
obtained according to Eq. (2), in the high temperature
regime, where Z is the partition function and b = 1/kBT

q ¼ 1

Z
expð�bHÞ ¼ 1

Z
ð1� bHÞ ¼ 1

Z
� Dq; ð2Þ

where Dq is a deviation density matrix. It is worth to
mention that only the deviation density matrices are af-
fected by the RF pulses and contribute to the detected
NMR signal.
4. Transition-selective pulses for spin 3/2

Quantum computing procedures in quadrupolar spin
systems are usually performed using transition-selective
pulses and an adequate analytical description of such
pulses is desirable. In the rotating frame with angular
frequency xRF, the evolution operator for a RF pulse
can be constructed according to [23,24,26]

U ¼ exp �i
Hp

�h
tp

� �

¼ exp �i DxIz � x1Ia þ
xQ

3
ð3I2z � IðI þ 1ÞÞ

h i
tp

� �
.

ð3Þ
In this expression, the parameter Dx = xRF � xL mea-
sures the frequency offset between the selective pulse car-
rier frequency (xRF) and the Larmor frequency; the
strength of the RF pulse is specified by x1 = cB1, where
B1 is the amplitude of the RF pulse; Ia is the angular
momentum spin operator corresponding to a pulse with
phase a (a = 0, 1, 2, 3 for phases x, y, �x, �y, respec-
tively); and tp is the pulse length. An analytical represen-
tation of the pulse operator matrix can be obtained by
diagonalization of the Hamiltonian, which allows the
explicit evaluation of the exponential operator. For
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transition-selective pulses, the condition xL � xQ � x1

must be satisfied, and also the pulse must be such that
xRF = (Er � Es)/�h, where r and s represent the two lev-
els connected by the selective pulse. A proper theoretical
description has already been developed by Wokaun and
Ernst [24], using the single-transition operator formal-
ism. For RF pulses with B1 field applied along the a
direction, the operator Ia can be written, in terms of sin-
gle-transition operators, as

Ia ¼
X
rs

ffiffiffiffiffi
crs

p
I rsa ; Iz ¼

X
rs

crsIrsz with

crs ¼ IðI þ 1Þ � mrms. ð4Þ

The operators Irsa correspond to single-transition opera-
tors connecting the energy levels r and s, as defined in
[24]. Thus, for describing a selective pulse in the transi-
tion r fi s with a nutation angle of h it is necessary to set
xRF = (Er � Es)/�h and Ia ¼

ffiffiffiffiffi
crs

p
Irsa , which correspond to

the case of x1 � xQ [24,26]. Under this condition, the
pulse operator can be rewritten as

U ¼ P rs
a ðhÞ

¼ exp

 
�ihxQ

2x1

Dx
xQ

X
ij

cijI ijz

 !
� x1

xQ

ffiffiffiffiffi
crs

p
Irsa

"

þ
 X

ij

cijI ijz

 !2

� 3

4
Þ
#!

. ð5Þ

The argument appearing in the exponential can be
easily diagonalized leading to a matrix representation
for the pulse operator. In the matrix representation,
the pulse operators for the three allowed transitions
are obtained with the choice Dx = �2xQ, 0, +2xQ for
transitions 01 (|3/2æ fi |1/2æ), 12 (|1/2æ fi |�1/2æ), and
23 (|�1/2æ fi |�3/2æ), respectively:

P 01
a ðhÞ¼

cos
ffiffi
3

p
h

2

� �
e2ixQtp i sin

ffiffi
3

p
h

2

� �
ei 2xQtp�p

2að Þ 0 0

isin
ffiffi
3

p
h

2

� �
ei 2xQtpþp

2að Þ cos
ffiffi
3

p
h

2

� �
e2ixQtp 0 0

0 0 1 0

0 0 0 e�i4xQtp

0
BBBBB@

1
CCCCCA;

P 12
a ðhÞ¼

e�ixQtp 0 0 0

0 cos h
2

� �
eixQtp isin h

2

� �
ei xQtp�p

2að Þ 0

0 isin h
2

� �
ei xQtpþp

2að Þ cos h
2

� �
eixQtp 0

0 0 0 e�ixQtp

0
BBBB@

1
CCCCA;
1
2
ðaaþ2yaþbbÞ �i

2
ðaa�bbþ2ixaÞ 1ffiffi

2
p e

i
2
ðaa�bb�2ixaÞ 1

2
ðaaþbb�2yaÞ iffiffi

2
p e

1ffiffi
2

p e�2ixqtðxb� iyb� ixd � ydÞ �iffiffi
2

p e�2ixqtðxb� iybþ ixd þ ydÞ
1ffiffi
2

p e�6ixqtðxc� iyc� ixe� yeÞ �iffiffi
2

p e�6ixqtðxc� iycþ ixeþ yeÞ

0
BBBBB@
P 23
a ðhÞ¼

e�4ixQtp 0 0 0

0 1 0 0

0 0 cos
ffiffi
3

p
h

2

� �
e2ixQtp i sin

ffiffi
3

p
h

2

� �
ei 2xQtp�p

2að Þ

0 0 isin
ffiffi
3

p
h

2

� �
ei 2xQtpþp

2að Þ cos
ffiffi
3

p
h

2

� �
e2ixQtp

0
BBBBB@

1
CCCCCA;

ð6Þ

where a is the pulse phase. The pulse matrices obtained
by numerical evaluation of the pulse operator using
Eq. (3) are in agreement with the above ones in the
limit x1 � xQ. It is important to notice that the non-
zero elements of the pulse matrix are modulated by
exponential factors, which depend on xQ and tp. This
effect is due to the quadrupole interaction, and the
modulating factors are significant only when the term
2p/xQ is comparable to the pulse duration. It is also
easily recognized that for tp = 2pk/xq, where k is an
integer number, the matrix representation of transi-
tion-selective pulses becomes independent of the quad-
rupolar frequency and reduces exactly to the
representation of ideal selective pulses presented in
the appendices of [5,18].
5. Effects of the quadrupolar interaction on the evolution

of a spin 3/2 system

With the selective-transition pulse matrices properly
defined, some general features of the evolution of a
3/2-spin system under the influence of such pulses can
be addressed. Starting from a deviation density matrix,
Dq (0), written in a general form as

Dqð0Þ ¼

a xa þ iya xb þ iyb xc þ iyc
xa � iya b xd þ iyd xe þ iye
xb � iyb xd � iyd c xf þ iyf
xc � iyc xe � iye xf � iyf d

0
BBB@

1
CCCA;

ð7Þ

the effect of a transition-selective RF pulse on such
matrix can be obtained by performing the operation
DqðtpÞ ¼ ðP rs

a ðtpÞÞDqð0ÞðPrs
a ðtpÞÞ

y. After the application
of a transition-selective p/2 RF pulse on the transi-
tion 01 with phase x, the deviation matrix, Dq (tp),
becomes
2ixqtðxbþ iybþ ixd � ydÞ 1ffiffi
2

p e6ixqtðxcþ iycþ ixe� yeÞ
2ixqtðxbþ iyb� ixd þ ydÞ iffiffi

2
p e6ixqtðxcþ iyc� ixeþ yeÞ

c e4ixqtðxf þ iyf Þ
e�4ixqtðxf � iyf Þ d

1
CCCCCA.

ð8Þ
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The diagonal elements of Dq (tp) do not depend on the
modulation factor, soneither theNMRspectrum, but sin-
gle-, double-, and triple-quantum elements aremodulated
by the quadrupolar evolution. Because the implementa-
tion of logical operations usually requiresmultiple pulses,
this can compromise the action of the pulse sequence as a
logical gate. An example of this statement is the pulse se-
quence ðpÞ01�y–ðp2 Þ

12
y –ðpÞ

01
y –ð2pÞ

01
�x. A single application of

this pulse sequence to the pseudo-pure state |00æ,
U j00i ¼ P 01

�xð2pÞP 01
y ðpÞP 12

y ðp2ÞP
01
�yðpÞj00i, produces the

state jw1i ¼ �1ffiffi
2

p ½j00iei17xQtp þ j10iei5xQtp � and the applica-
tion of the same pulse sequence to the state |w1æ, U|w1æ,
produces the state jw2i ¼ 1

2
½j00iðei18xQtp þ ei34xQtpÞþ

j10iðei22xQtp � ei6xQtpÞ� (see Appendix A for the corre-
sponding density matrices). Thus, this pulse sequence
only correspond to a self-reversible Hadamard operation
in the first qubit, U j00i ¼ 1ffiffi

2
p ðj00i þ j10iÞ and U2|00æ =

|00æ, for the condition tp = 2pk/xq, where k is an integer
number, disregarding global phases. However, this opti-
mal pulse length may vary significantly upon experimen-
tal conditions, making important to perform calibration
experiments. A calibration pulse sequence that encodes
the quadrupolar evolution during the pulse in the inten-
sity of the NMR peaks is ðp=2Þ12y � ðp=2Þ01x � ðp=2Þ12y �
ðp=20Þhardcyclops, where ðp=20Þhardcyclops stands for a hard pulse
applied according to the CYCLOPS detection scheme.
The resulting NMR line intensitiesA01,A12, andA23, cor-
responding, respectively, to the allowed transitions
|3/2æ fi |1/2æ, |1/2æ fi |�1/2æ, and |�1/2æ fi |�3/2æ, after
running such pulse sequence are:

A01 ¼ 0.65f2e11e12 � e12e22 þ e13e23g
þ 0.61fe12e22 � e13e23g cos ð2xQtpÞ;

A12 ¼ 4.5e12e13 � 1.41e22e23 cos ð2xQtpÞ;
A23 ¼ 0.65f2e13e14 þ e12e22 þ e13e23g

þ 0.61fe12e22 � e13e23g cos ð2xQtpÞ;

ð9Þ

where eij are the matrix elements of the (p/20) pulse
operator, see [20]. Thus, because the line intensities de-
pend on xQtp, the condition tp = 2pk/xQ can be exper-
imentally obtained by monitoring the line intensities as a
function of tp.
6. Quantum state tomography and quadrupolar evolution

The quantum state of a spin system can only be com-
pletely characterized if all the elements of the density
matrix are known, making the quantum state tomogra-
phy a fundamental tool for quantum information pro-
cessing. Recently, a method for performing the
quantum state tomography of a quadrupolar spin 3/2
NMR system has been reported [20]. The following steps
summarize the basic idea of the method. A more de-
tailed description can be found in [20]:
(a) The diagonal elements of the deviation density
matrix are determined from the intensities of the
three lines measured in the averaged spectrum
obtained after the application of a p/20 read-
out pulse applied under the CYCLOPS phase
cycling scheme. Then, a set of three equations
relating the matrix elements of the p/20 pulse,
the diagonal elements of the density matrix a, b,
c, d, and the line intensities are built. A fourth
equation is obtained from the trace relation
a + b + c + d = 0 for the deviation density
matrix. Thus, the set of equations is solved to
obtain a, b, c, and d.

(b) To obtain the coherences of the deviation density
matrix, p/2 transition-selective pulses with proper
phases are applied to the system prior to the read-
out pulse to drag each individual matrix element
to the diagonal. Then, the same reading proce-
dure is applied to determine the new diagonal ele-
ments, and, consequently, each element dragged
to the diagonal by the transition-selective pulse.
The phase and frequency of the selective pulse
define which element is obtained. For single-
quantum coherences one selective pulse is
applied, while for double- and triple-quantum
coherences two and three pulses are used,
respectively.

Because the quantum state tomography method
involves the application of more than one successive
transition-selective pulse, it is expected that the quadru-
polar evolution plays an important role in the process.
Using the pulse matrices of Eq. (6) and the procedure
summarized above, it is possible to obtain a set of
equations, which allows determining the single-quan-
tum elements:

ya ¼ ½q11ðP 01
X Þ � q22ðP 01

X Þ�=2;
yd ¼ ½q22ðP 12

X Þ � q33ðP 12
X Þ�=2;

yf ¼ ½q33ðP 23
X Þ � q44ðP 23

X Þ�=2;
xa ¼ ½q11ðP 01

Y Þ � q22ðP 01
Y Þ�=2;

xd ¼ ½q22ðP 12
Y Þ � q33ðP 12

Y Þ�=2;
xf ¼ ½q33ðP 23

Y Þ � q44ðP 23
Y Þ�=2;

ð10Þ

where the notation qkkðPmn
a � � � P ij

a0 Þ stands for the diago-
nal elements (kth line and kth column) of the deviation
density matrix after the application of the respective
Pmn
a � � � P ij

a0 pulse sequence, from right to left. It can be
observed that these equations are exactly the same as
presented in [20], which reflects the fact that the diago-
nal elements of the density matrix after a single transi-
tion-selective pulse are not affected by the quadrupolar
evolution.

Analogously, for obtaining double-quantum coher-
ences the set of equations are:



Fig. 1. Calibration curves obtained after the application of the pulse
sequence ðp=2Þ12y –ðpÞ01x –ðp=2Þ12y –ðp=20Þhardcyclops to the equilibrium state.
Symbols represent experimental measurements while solid lines are the
curves calculated according to Eq. (9). The simulations performed
using Gaussian-shaped pulses and the full Hamiltonian of Eq. (3) are
identical to those calculated according to Eq. (9). In all cases, a
constant phase offset corresponding to a 7.5 ls free evolution under the
quadrupolar interaction was added to the simulated curves to match
the experimental results.
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yb ¼ xd þ
ffiffiffi
2

p

2
cosð2xqtÞ q3;3 P 01

X P
12
Y

� �
� q2;2 P 01

X P
12
Y

� �� 	
þ

ffiffiffi
2

p

2
sinð2xqtÞ q3;3 P 01

X P
12
X

� �
� q2;2 P 01

X P
12
X

� �� 	
;

xb ¼ �yd þ
ffiffiffi
2

p

2
cosð2xqtÞ q2;2 P 01

X P
12
X

� �
� q3;3 P 01

X P
12
X

� �� 	
þ

ffiffiffi
2

p

2
sinð2xqtÞ q3;3 P 01

X P
12
Y

� �
� q2;2 P 01

X P
12
Y

� �� 	
;

xe ¼ �yf þ
ffiffiffi
2

p

2
cosð2xqtÞ q3;3 P 12

X P
23
X

� �
� q4;4 P 12

X P
23
Y

� �� 	
þ

ffiffiffi
2

p

2
sinð2xqtÞ q4;4 P 12

X P
23
Y

� �
� q3;3 P 12

X P
23
Y

� �� 	
;

ye ¼ xf þ
ffiffiffi
2

p

2
cosð2xqtÞ q4;4 P 12

X P
23
Y

� �
� q3;3 P 12

X P
23
Y

� �� 	
þ

ffiffiffi
2

p

2
sinð2xqtÞ q4;4 P 12

X P
23
X

� �
� q3;3 P 12

X P
23
X

� �� 	
.

ð11Þ
Using these equations, the real and imaginary parts of

double-quantum elements, xb, xe, yb, and ye, can be deter-
mined. As it can be observed, under the specific choice of
the pulse duration tp (xQtp = 2kp) the set of Eq. (11) re-
duces to the set of equations used to obtain the double-
quantum elements presented in [20]. The two equations
used to obtain the triple-quantum elements are:

�
ffiffiffi
2

p
xf sinð6xqtÞþ yf cosð6xqtÞ
� 	

þðyc � xeÞcosð8xqtÞ
þ ðxcþ yeÞ sinð8xqtÞ ¼ q4;4 P 01

X P
12
X P

23
X

� �
�q3;3 P 01

X P
12
X P

23
X

� �
;ffiffiffi

2
p

xf cosð6xqtÞ� yf sinð6xqtÞ
� 	

þðxc� xeÞcosð8xqtÞ
þ ðye� ycÞ sinð8xqtÞ ¼ q3;3 P 01

Y P
12
Y P

23
Y

� �
�q4;4 P 01

Y P
12
Y P

23
Y

� �
.

ð12Þ
The solution of this set of coupled equations for xc

and yc gives triple-quantum elements of the density ma-
trix. These equations are also drastically simplified with
xQtp = 2kp.

Therefore, with this generalized method all the ele-
ments in the density matrix can be obtained for any
pulse duration.
7. Results and discussion

7.1. Calibration experiments

In Section 5, a calibration experiment, which encodes
the quadrupolar evolution in the spectral intensities, was
proposed. Fig. 1 shows the resulting experimental spec-
tral intensities as a function of pulse duration after the
application of the calibration pulse sequence. Theoreti-
cal curves obtained from Eq. (9) are also shown.

As it can be observed, the periodicity of the experi-
mental and calculated intensities is exactly the same,
confirming the cos (2xqtp) modulation as stated in Eq.
(9). However, to reproduce the experimental curve it
was necessary to introduce a constant phase shift, which
corresponds to 7.5 ls of free evolution under the quad-
rupolar interaction. This was attributed to an extra evo-
lution time, introduced by the experimental frequency
shift delay (�3.5–4.0 ls in the VARIAN INOVA spec-
trometer) performed between each pulse. When the
pulse length is such that the effect of the quadrupolar
evolution during the pulse is eliminated, the line intensi-
ties of the transitions |3/2æ fi |1/2æ and |�1/2æ fi |�3/2æ
are maximized whereas the line intensity corresponding
to the transition |1/2æ fi |�1/2æ is minimized. Therefore,
setting the pulse length to the value corresponding to the
minimum intensity for the central line, the effect of the
quadrupolar evolution during the pulse is minimized.
The phase shift introduced to match the theoretical
and experimental curves demonstrates the importance
of performing calibration experiments instead of simply
choosing the optimum pulse time according to the quad-
rupolar frequency measured from the spectrum
(xQtp = 2kp). Therefore, the calibration procedure pro-
vides a way for adequately choosing the pulse length to
minimize the effect of the quadrupolar evolution during
transition-selective pulses.

7.2. Experimental quantum state tomography and

quantum logical gates

The main desirable characteristics of a quantum state
tomography process is the ability of reliably obtaining
different elements of the density matrices. To demon-
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strate this feature, Fig. 2 shows a bar graph of the devi-
ation density matrices representing the selected non-nor-
malized superposition of states |00æ + |01æ; |01æ + |10æ;
|10æ + |11æ; |00æ + |10æ; |01æ + |11æ; and |00æ + |11æ, whose
corresponding density matrices contain coherences of
different orders. Because the imaginary parts of the devi-
ation density matrices are zero for these states, only
their real parts are shown. Such set of states are ob-
tained from different pseudo-pure states using the pulse
sequences corresponding to the following operations:

ðaÞP 01
�yðpÞP 01

x

p
2

� �
j00i ¼ iffiffiffi

2
p ðj00i þ j01iÞ;

ðbÞP 12
x ðpÞP 12

�y

p
2

� �
j00i ¼ iffiffiffi

2
p ðj01i þ j10iÞ;

ðcÞP 23
x ðpÞP 23

�y

p
2

� �
j10i ¼ iffiffiffi

2
p j10i þ j11ið Þ;

ðdÞP 01
�xð2pÞP 01

y ðpÞP 12
y

p
2

� �
P 01
�yðpÞj00i ¼

�1ffiffiffi
2

p ðj00i þ j10iÞ;

ðeÞP 01
�xð2pÞP 12

y ðpÞP 23
y

p
2

� �
P 12
�yðpÞj01i ¼

�1ffiffiffi
2

p ðj01i þ j11iÞ;

ðfÞP 12
x ðpÞP 23

x ðpÞP 12
x ðpÞP 01

x ðpÞP 01
y
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� �
j00i ¼ 1ffiffiffi

2
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ð13Þ

It is easily recognized that the operations in Eqs.
(13a), (13c), (13d), and (13e) are Hadamard transforma-
tions at different qubits, while of Eqs. (13b) and (13f) the
pulse sequence creates simulations of entangled states.
The global phases are not relevant because they do not
appear in the corresponding density matrices. However,
note that the minus signal for the density matrix shown
in Fig. 2C appears because the levels |�1/2æ, |�3/2æ are
depleted in population (see [17]).

The importance of using calibrated transition-selec-
tive pulses to eliminate the quadrupolar evolution be-
Fig. 2. Experimental deviation density matrices of several quantum
states containing quantum coherences of different orders. In all cases,
the tomography method was performed using Eqs. (10), (11), and (12)
with transition-selective pulses optimized to avoid the effect of the
quadrupolar evolution according to the procedure described in the
text.
comes clear in Fig. 3. In this case, the deviation
density matrices are obtained after applying the pulse se-
quence ðpÞ12�y � ðp=2Þ23y � ðpÞ12y � ð2pÞ01�x (Eq. (13e)) to
the pseudo-pure state |11æ with (Fig. 3A) and without
(Fig. 3B) pulse optimization. While the diagonal ele-
ments are the same, the non-diagonal elements Dq34
and Dq43 change according to the pulse length. For
the optimized pulse length (tp = 360 ls in the experimen-
tal spectrum), Dq34 and Dq43 are purely real, and the
deviation density matrix corresponding to the pseudo-
pure state |01æ � |11æ is obtained. On the other hand,
for a pulse length of tp = 356 ls the imaginary parts of
the deviation density matrix clearly do not vanish. Thus,
a true Hadamard Quantum gate on the qubit A is only
obtained using the optimal pulse length. For all experi-
mental deviation density matrices, the tomography pro-
cesses were optimized to avoid the effects of the
Fig. 3. Example of the quadrupolar evolution effect on the execution
of a quantum gate that obtains the state (|01æ � |11æ) from the state
|11æ. For the optimized pulse length (tp = 360 ls in the experimental
spectrum), the deviation density matrices have only real non-zero
elements, while for another pulse length (tp = 356 ls) some non-
diagonal imaginary elements show up.



232 F.A. Bonk et al. / Journal of Magnetic Resonance 175 (2005) 226–234
quadrupolar evolution and the effect discussed above
only corresponds to the execution of the gate.

Additionally, Fig. 3 shows the simulation of the cor-
responding states performed using square-shaped and
Gaussian-shaped selective pulses. In both cases, non-op-
timized pulse lengths (tp = 6p/xQ � 4 ls) were used in
the simulation. Notice that the results obtained for
square- and Gaussian-shaped pulses, and with the
matrices of Eq. (6) are rather similar, confirming the
validity of the theoretical description even if Gaussian
pulses are used in the experiments.

The ability of reliably executing quantum state
tomography allows performing many applications, for
instance checking the execution of different quantum
operations. The pulse sequence and the corresponding
operator that executes the CNOT gate with control in
the qubit A (CNOTA) and B (CNOTB) are:
CNOTA � Pulse Seq: ðpÞ23x CNOT B � Pulse Seq: ðpÞ12x � p23
x � ðpÞ12x ;

UCNOTA j00i ¼ P 23
x ðpÞj00i ¼ j00i UCNOTB j00i ¼ P 12

x ðpÞP 23
x ðpÞP 12

x ðpÞj00i ¼ j00i;
UCNOTA j01i ¼ P 23

x ðpÞj01i ¼ j01i UCNOTB j01i ¼ P 12
x ðpÞP 23

x ðpÞP 12
x ðpÞj01i ¼ �j11i;

UCNOTA j10i ¼ P 23
x ðpÞj10i ¼ ij11i UCNOTB j10i ¼ P 12

x ðpÞP 23
x ðpÞP 12

x ðpÞj10i ¼ �j10i;
UCNOTA j11i ¼ P 23

x ðpÞj11i ¼ ij10i UCNOTB j11i ¼ P 12
x ðpÞP 23

x ðpÞP 12
x ðpÞj11i ¼ �j01i.

ð14Þ
Fig. 4 shows a set of tomographed deviation density
matrices obtained after the execution of a controlled
not (CNOT) quantum gate with control in both qubits.
The transformation of the states according to the action
of the CNOT gate is easily recognized, showing that with
the above pulse sequences the gate can be executed with
very good reliability. Again, the minus signal in labeling
of the deviation density matrix indicates that the level
corresponding to the state is depleted in population.

Another crucial feature in quantum computing NMR is
the ability of controlling anddetecting relative phases of quan-
Fig. 4. Set of experimentally tomographed deviation density matrices c
tum states. This can be demonstrated by applying the pulse
sequences that performed the operations shown in Eqs.
(13a), (13b), and (13c) to different pseudo-pure states, i.e.,
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2
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ð15Þ
Fig. 5 shows the deviation matrices of the states cre-
ated after applying the corresponding pulse sequences.
The set of operations shown in Figs. 5A and 5C consti-
tutes a full Hadamard operation in the second qubit,
while in Fig. 5B the resulting state is a simulation of
an entangled state. The possibility of detecting and con-
trolling relative phases is clearly shown in the tomo-
graphed deviation density matrices. It is interesting to
observe that the NMR spectra obtained after applying
each pulse sequence of the gate followed by p/20 read-
out pulse are essentially identical, indicating the impos-
orresponding to truth tables for CNOT�s gates (for both qubits).



Fig. 5. Deviation density matrices representing superposition of states
with different relative phases.
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sibility of obtaining relative phases from the NMR spec-
trum. The inversion of the spectral intensities in Fig. 5B
is due to the population depletion in the corresponding
levels, which is not associated to the relative phases. The
phase manipulation shown in Fig. 5 guarantees that the
presented gates are self-reversible, i.e., if the same pulse
sequence is applied to the superposition of states the ini-
tial state is recovered.
2

8. Conclusions

It is shown that the effect of the quadrupolar evolution
during transition-selective pulses is extremely relevant for
the implementation of quantum logical operations in
quadrupolar systems. The importance of this effect was
experimentally demonstrated using a two-qubit spin 3/2
system. Using matrix representation of the propagation
operators for describing the RF pulses, it was possible
to develop a calibration pulse sequence that encodes the
effect of the quadrupolar evolution during the pulses in
the NMR line intensities. This allowed to stablish of a
relationship between the parameters that describe the
RF pulse. Thus, it was possible to find an optimal pulse
length that effectively minimizes the effect of the quadru-
polar interaction during transition-selective pulses.

Experimental deviation density matrices of several
quantum states containing quantum coherences of dif-
ferent orders were obtained using transition-selective
pulses optimized to avoid the effect of the quadrupolar
evolution (see Figs. 2 and 3). In addition, truth tables
for the CNOT (for both qubits) gates were constructed
using experimentally tomographed deviation density
matrices. Furthermore, the new proposed calibration
of the RF selective pulses allowed the correct measure-
ment of the off-diagonal coherences for several quantum
superpositions of states, as well as reliable determination
of their corresponding relative phases.

All the numerical simulations performed using Gauss-
ian-shaped pulses and the full Hamiltonian produced
identical results as that ones performed using the derived
pulse operators, as can be seen in Fig. 3. All the experi-
mental results are in agreement with theoretical predic-
tions for this particular system. Most of the procedures
presented can be easily adapted to describe selective
pulses in the case of higher spin systems (>3/2) and even
for coupled spin 1/2 nuclei, where such pulses may be also
applied to perform quantum operations.
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Appendix A. Calculated deviation density matrices using

the developed pulse matrices

(a) After the application of the pulse sequence ðpÞ01�y
– ðp=2Þ12y –ðpÞ

01
y –ð2pÞ

01
�x to the pseudo-pure state |00æ

Dq ¼

þ 1
2

0 ei12xQtp 0

0 � 1
2

0 0

e�i12xQtp 0 þ 1
2

0

0 0 0 � 1

0
BBB@

1
CCCA.
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(b) After the application of the pulse sequence
ðpÞ01�y � ðp=2Þ12y � ðpÞ01y � ð2pÞ01�x � ðpÞ01�y � ðp=2Þ12y �
ðpÞ01y � ð2pÞ01�x to the pseudo-pure state |00æ

Dqj00iþj10i

¼

cosð16xQtpÞþ 1
2

0 �1
2
e�i4xQtp �ei28xQtpð Þ 0

0 �1
2

0 0
1
2
ei4xQtp �e�i28xQtpð Þ 0 �cosð16xQtpÞþ 1

2
0

0 0 0 �1
2

0
BBB@

1
CCCA.
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